
Getting Started with VSDK
(C++ Edition)

2

Getting Started with VSDK (C++ Edition)
The Vivoka SDK is meant to greatly facilitate the creation of voice-enabled applications, regardless of
who's providing the underlying technologies!

Installation
Upon getting your access through your sales representative, the SDK is installable through Conan, the
C++ package manager. Please refer to the accompanying document
vdk_tutorials_vsdk_compiling_samples_with_conan.pdf for dedicated setup instructions.
In case Conan is already configured but you don't want to go through installing a sample, you can
directly install libraries like so:
List the packages you have access to
conan search -r vivoka-customer 'vsdk-*/*@vivoka/customer'
Install a specific version
conan install <package_reference>

Configuration
All VSDK engines are to be initialized with a JSON configuration file. This file contains a version, then
each engine will declare its own configuration block:
{
 "version": "2.0",
 "vasr": {
 ...
 },
 ...
}

We strongly recommend you put this file under a config directory because most engines will
generate additional configuration files or use a cache (configurable).

Library versions
You can access the versions of both VSDK and the engine like so:
#include <vsdk/global.hpp>

// Engine creation is explained later
fmt::print("VSDK v{} ; Engine v{}\n", Vsdk::version(), engine->version());

Error Handling
The SDK will throw exceptions as a way to report errors and avoid having to check every single
function call. An exception stack is made to help track the origin of the error, so the following base
program is recommended to print the whole stack of errors:
#include <vsdk/Exception.hpp>

int main() try
{
 // use VSDK here
 return EXIT_SUCCESS;
}
catch (std::exception const & e)
{
 fmt::print(stderr, "A fatal error occured:\n");
 Vsdk::printExceptionStack(e);
 return EXIT_FAILURE;
}

Please note that some part of the SDK might run on another thread of execution, and exceptions

https://conan.io

3

can't cross thread boundaries. You have to protect your threads from exceptions by either catching
them inside or sending tasks to the main thread.

Audio Management
VSDK being a SDK around voice technologies, audio is a central component. Starting from version 6,
audio pipelining has been added for greater power and simplicity.

Pipeline
An audio pipeline is composed of 3 types of audio modules: one Producer, zero or more Modifiers
and zero or more Consumers. Simply put: a producer sends audio (either synchronously or
asynchronously) into modifiers (if any), and the resulting audio is finally given to consumers (if any).
#include <vsdk/audio/Pipeline.hpp>
#include <vsdk/audio/producers/File.hpp>
#include <vsdk/audio/consumers/File.hpp>

using namespace Vsdk::Audio;

void copyAudioFile(std::string const & inPath, std::string const & outPath)
{
 Pipeline p;

 // Here we construct the modules directly into the pipeline but you can do so outside!
 p.setProducer<Producer::File>(inPath);
 p.pushBackConsumer<Consumer::File>(outPath);
 p.run(); // blocking call

 // Asynchronous execution would rather call p.start() and p.stop() instead
 // but not all ProducerModule support it!
}

If you would like to create your own Audio Module, inherit ProducerModule, ModifierModule or
ConsumerModule from Pipeline.hpp.

ASR
VDK 3 features three different ASR libraries: CSDK, TNL and our very own: VASR.

Basics
You will need to manipulate 2 concepts: Recognizers & Models. Both need to be configured but first
let's explain who's who.
Models are fed to the Recognizer and describe the range of words and utterances that can be
recognized. They will either be pre-compiled by the provider (like “free speech” models), or compiled
from a grammar that you've written beforehand in the VDK Studio.
There are 3 types of models:

Type Description

static Static models embedd all possible vocabulary inside a single file or folder.

dynamic Dynamic models have “holes” where you can plug new vocabulary at runtime. These
need to be prepared and compiled at runtime before installing it on a recognizer.

free-speech Free-Speech models are very large vocabulary static models. They often require
additional files and are not supported by all engines.

Recognizers inherit Audio::ConsumerModule and report results as they receive audio and compare it to
the current models data.

4

Configuration
Each engine has its own configuration quirks and tweaks, but here is a common (though incomplete)
pattern using VSDK-CSDK, which supports all 3 types of models:
{
 "version": "2.0",
 "csdk": {
 "paths": {
 "data_root": "../data"
 },
 "asr": {
 "recognizers": {
 "rec": { ... }
 },
 "models": {
 "static_example": {
 "type": "static",
 "file": "<model_name>.fcf"
 },
 "dynamic_example": {
 "type": "dynamic",
 "file": "<base_model_name>.fcf",
 "slots": {
 "firstname": { ... },
 "lastname": { ... }
 },
 ...
 },
 "free-speech_example": {
 "type": "free-speech",
 "file": "<base_model_name>.fcf",
 "extra_models": { ... }
 }
 }
 }
 }
}

Starting the engine
#include <vsdk/asr/csdk.hpp> // underlying ASR engine, here we choose CSDK
using AsrEngine = Vsdk::Asr::Csdk::Engine;

Vsdk::Asr::EnginePtr const engine = Vsdk::Asr::Engine::make<AsrEngine>("config/vsdk.json");
// engine is a std::shared_ptr, copy it around as needed but don't let it go out of scope while you
need it!
// const here means the pointer is const, not the pointee (the Engine)

You can't create two separate instances of the same engine! Attempting to create a
second one will get you another pointer to the existing engine. Terminate the first engine
(i.e. let it go out of scope) then you can make a new instance.

That's it! If no exception was thrown your engine is ready to be used.
Each engine has its own configuration document, check it out for further details, as well as the ASR
samples to get started with actual, production-ready code.

Creating a Recognizer
auto const rec = engine->recognizer("rec"); // Instantiate the recognizer we configured above

You can then plug yourself to the reporting mechanism:

5

rec->subscribe([] (Vsdk::Asr::Recognizer::Event const & e) { ... });
rec->subscribe([] (Vsdk::Asr::Recognizer::Error const & e) { ... });
rec->subscribe([] (Vsdk::Asr::Recognizer::Result const & r) { ... });

And finally, apply a model to actually recognize vocabulary:
rec->setModel("static_example"); // same call whether the model is static, dynamic or free-speech!

Also, don't forget to insert it in the pipeline or nothing's going to happen by itself:
p.pushBackConsumer(rec);

Dynamic Models
Only dynamic models need to be manipulated explicitely to add the missing data at runtime:
auto const model = engine->dynamicModel("dynamic_example");
model->addData("firstname", "André");
model->addData("lastname", "Lemoine");
model->compile();
// We can now apply it to a recognizer!
rec->setModel("dynamic_example"); // Or use setModel(model->name())

TTS
VDK 3 features three TTS libraries: CSDK, Baratinoo and VtApi.

Configuration
TTS engines must be configured before the program starts. Here is a complete setup with 2 channels,
one for each language possible (this time using the Baratinoo engine):
{
 "tts": {
 "data_path": "../data", // This is relative to vsdk.json itself, NOT the program's working dir!
 "channels": {
 "channel_fr": { "voices": ["Arnaud_neutre"] },
 "channel_en": { "voices": ["Laura"] }
 }
 }
}

An empty channel list will trigger an error, as well as an empty voice list!

Voice format
Each engine has its own voice format, described in the following table:
Engine Format Example

vsdk-csdk <language>,<name>,<quality> enu,evan,embedded-pro

vsdk-vtapi <name>,<quality> alice,d22

vsdk-baratinoo <name> Arnaud_neutre

Starting the engine
#include <vsdk/tts/baratinoo.hpp>
using TtsEngine = Vsdk::Tts::Baratinoo::Engine;

auto const engine = Vsdk::Tts::Engine::make<TtsEngine>("config/vsdk.json");

Listing the configured channels and voices

6

// With C++17 or higher
for (auto const & [channel, voices] : engine->availableVoices())
 fmt::print("Available voices for '{}': ['{}']\n", channel, fmt::join(voices, "'; '"));

// With C++11 or higher
for (auto const & it : engine->availableVoices())
 fmt::print("Available voices for '{}': ['{}']\n", it.first, fmt::join(it.second, "'; '"));

Creating a channel
Remember, channel must be configured beforehand!
Vsdk::Tts::ChannelPtr const channelFr = engine->channel("channel_fr");
channelFr->setCurrentVoice("Arnaud_neutre"); // mandatory before any synthesis can take place

You can also activate a voice right away:
auto const channelEn = engine->makeChannel("channel_en", "laura");
// ChannelPtr is also a std::shared_ptr

The engine instance can't die while at least one channel instance is alive. Destruction
order is important!

Speech Synthesis

Speech Synthesis is synchronous! That means the call will block the thread until the
synthesis is done or an error occured. If you need to keep going, put that in another
thread.

Vsdk::Audio::Buffer const resultFr = channelFR->synthesizeFromText("Bonjour ! Je suis une voix
synthétique.");

// Also works with SSML input
auto const ssml = R"(<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis" xml:lang="en-
US">
 Here is an <say-as interpret-as="characters">SSML</say-as> sample.
 </speak>)";
auto const resultEn = channelEn->synthesisFromText(ssml);

You can load your text or SSML input from a file too:
auto const result = channel->synthesisFromFile("path/to/file");

Audio::Buffer is NOT a pointer type! Avoid copying it around, prefer move operations.

Playing the result
VSDK provides a cross-platform player in the vsdk-audio-portaudio package. Playing the result is very
easy:
Vsdk::Audio::Consumer::PaPlayer player;
player.play(buffer.data(), buffer.sampleRate(), buffer.channelCount());
// Or more simply
player.play(buffer);

The audio data is a 16bit signed Little-Endian PCM buffer. Channel count is always 1 and sample rate
varies depending on the engine:

7

Engine Sample Rate (kHz)

csdk 22050

baratinoo 24000

vtapi 22050

Storing the result on disk
buffer.saveToFile("path/to/file.pcm");

Only PCM extension is available, which means the file has no audio header of any sort.
You can play it by supplying the right parameter, i.e.:
aplay -f S16_LE -s <sample_rate> -c 1 file.pcm

Or add a WAV header:
ffmpeg -f s16le -ar <sample_rate> -ac 1 -i file.pcm file.wav

Voice Biometrics
VDK 3 features two Voice Biometrics libraries: TSSV and IDVoice.

Configuration
Voice biometrics engines must be configured before the program starts. Here is a complete setup for
the TSSV provider:
{
 "version": "2.0",
 "tssv": { // Contrary to other technologies,
 "biometrics": { // biometrics paths are relative to the program's working directory!
 "generated_models_path": "data/models",
 "background_model_TI": "data/text-independent-16kHz.ubm",
 "background_model_TD": "data/text-dependent-16kHz.ubm"
 }
 }
}

Starting the engine
#include <vsdk/biometrics/tssv.hpp>
using BioEngine = Vsdk::Biometrics::Tssv::Engine;

auto const engine = Vsdk::Biometrics::Engine::make<BioEngine>("./config/vsdk.json");

Creating a model
Models contain enrollment data that recognition operations need.
// To create a text independant model
auto const model = engine->makeModel("test_ti", Vsdk::Biometrics::ModelType::TEXT_INDEPENDANT);

// To create a text dependant model
auto const model = engine->makeModel("test_td", Vsdk::Biometrics::ModelType::TEXT_DEPENDANT);

Checking users in the model
If a model was previously created with the same name it will be loaded. You can check enrolled users
with:
fmt::print("Enrolled users: '{}'", fmt::join(model->users(), "', '"));

8

Adding a user to the model
You can either add raw audio data directly or from a file. After adding all the data for a given user,
compile the model to finalize the enrollment process:
model->addRecord("victorien", "data/victorienti.wav");
model->compile();

The more data you give the model better the result will be.
Prefer to register the data in the condition of the use case of the model.

The format is preferred to be 16Khz mono-channel, you can create such wav file with the
command:
arecord -c 1 -f S16_LE -r 16000 [filename].wav

Checking model info
Models report the status of the enrollment:
model->subscribe([] (Vsdk::Biometrics::Model::Event const & e) { ... });
model->subscribe([] (Vsdk::Biometrics::Model::Error const & e) { ... });

Performing authentication or identication
Both are covered in the same chapter as it is very similar:
// Identificator
auto authenticator = engine->makeIdentificator("ident", model, 5);
// Authenticator
auto identificator = engine->makeAuthenticator("auth", model, 5);
auto identificator->setUserToRecognize("victorien");

The only difference is that the authentication can only recognize user “victorien” and the
identification can recognize every user enrolled in the model.
Note the third parameter: it is the confidence level you require. It ranges between 0 and 10 and act
differently depending on your provider, 10 meaning you want your recognizer to be the strictest
possible (you will have the lowest false positive but also the highest false negative).
They both inherit Audio::ConsumerModule and must be inserted into the pipeline.
Getting the result
#include <vsdk/biometrics/tssv/Constants.hpp>

identificator->subscribe([] (Vsdk::Biometrics::Identificator::Result const & result)
{
 namespace Key = Vsdk::Constants::Tssv::IdentResult;

 auto const user = result.json[Key::id].get<std::string>();
 auto const score = result.json[Key::score].get<float>();
 fmt::print("Ident Result: '{}' (score: {})\n", user, score);
});

authenticator->subscribe([] (Vsdk::Biometrics::Authenticator::Result const & result)
{
 namespace Key = Vsdk::Constants::Tssv::AuthResult;

 auto const user = result.json[Key::id].get<std::string>();
 auto const score = result.json[Key::score].get<float>();
 fmt::print("Auth Result: '{}' (score: {})\n", user, score);
});

Different providers will give you different results, for example IDVoice reports varying results as it

9

analyzes the audio, while TSSV only sends you result if the engine thinks it is acceptable (depending
of the confidence level you set).
We recommend that you try it out the application in real situation to select your custom minimum
score required to satisfy your need in false rejection and false acceptation. But by default you can
just check if the score is above 0.

AFE
VDK 3 features only one Audio Front End: VAFE.

Configuration
Here is a template that needs to be added in the vsdk.json configuration file, using VAFE:
{
 "vafe": {
 "afe": {
 "analyzers": {
 "first": { "type": "snr" },
 "second": { "type": "rt60", "bitspersample": 256 },
 "third": { "type": "mos", "model": "path_to_mos_model.json" }
 },
 "filters": {
 "filter1": { "type": "bandpass", "lowfrequency": 80, "highfrequency": 400 },
 "filter2": { "type": "lowpass", "frequency": 80 },
 "filter3": { "type": "highpass", "frequency": 400 }
 }
 }
 }
}

Includes
#include <vsdk/afe/vafe.hpp>

Creating an Analyzer
auto const snrAnalyzer = engine->makeAnalyzer(name);
snrAnalyzer->subscribe([] (Vsdk::Afe::Analyzer::Result const & r) { ... });
p.pushBackConsumer(snrAnalyzer);

Creating a Filter
auto const bandpassFilter = engine->makeFilter("filter1");
p.pushBackModifier(bandpassFilter);

Insertion Order
Multiple analyzers and filters can be registered. Order has an importance, especially the modifiers
(here filters) as they are called sequentially. You can use various methods of inserting to control the
order:
p.pushBackModifier(filter1);
auto it = p.pushBackModifier(filter3);
p.insertModifier(it, filter2); // inserts filter2 between 1 and 3

Analyzers
Every values are normalized in percentage, with 100% as best value possible.
Three analyzers type are available:
Type Meaning Description

SNR Signal-Noise Ratio Representation of the distance between speech and noise into the
signal.

10

Type Meaning Description

RT60 Reverb-Time for 60dB Algorithm used to evaluate echo present in the data.

MOS Mean Opinion Score Tries to evaluate audio as humans using machine learning.

	Getting Started with VSDK (C++ Edition)
	Installation
	Configuration
	Library versions
	Error Handling
	Audio Management
	Pipeline

	ASR
	Basics
	Configuration
	Starting the engine
	Creating a Recognizer
	Dynamic Models

	TTS
	Configuration
	Voice format

	Starting the engine
	Listing the configured channels and voices
	Creating a channel
	Speech Synthesis
	Playing the result
	Storing the result on disk

	Voice Biometrics
	Configuration
	Starting the engine
	Creating a model
	Checking users in the model
	Adding a user to the model
	Checking model info
	Performing authentication or identication
	Getting the result

	AFE
	Configuration
	Includes
	Creating an Analyzer
	Creating a Filter
	Insertion Order
	Analyzers

