Cerence ASR (Embedded)
Grammar Formalisms

INTRODUCTION

The Cerence® Companion SDK provides several development formalisms.
They are complementary to the actual application coding but are just as
important when you are designing your speech application.

Before you read this document and if you are not familiar with Cerence
ASR (Embedded) programming or with Cerence ASR (Embedded) and its
features, please read the Cerence ASR (Embedded) Documentation for

Companion SDK.

The formalisms described in this document is BNF+. The Cerence BNF+
grammar format is the specification language that you have to use when
writing Cerence ASR (Embedded) native source grammars.

This manual provides a comprehensive description of the BNF+ grammar
formalism. The concepts are introduced gradually, and many examples are
provided along the way.

THE CERENCE GRAMMAR FORMAT

Introducing the Cerence grammar format

This section introduces the Cerence BNF+ grammar format that is used to
write continuous speech recognition grammars. We also describe how the
functionality expressed by the Cerence grammar format fits into the
Cerence ASR (Embedded) API and configuration.

Contexts

An application with speech recognition will work best if it models it's
expectations of what the user is going to say. The speech recognition
context is Cerence ASR (Embedded)’s abstraction which describes those
expectations.

As explained in the developer’s guides, a context is a binary data file which
is read by the Cerence ASR (Embedded) recognizer. It is specified when

configuration a Cerence ASR (Embedded) application. For example, in the
following JSON application configuration file, modelm_small.fcfis a
context:

{
"version": "VoConHigh 5.0",
"application": [
{
"name": "APP_CNC",
"input": [
{
"type": "asr",
"asr": {
"search": [
{
"name": "CNC _CTX",
"type": "static",
"static": {
"file_name": "modelm_small.f
¥
"vocon_parameters": {
"LH_SEARCH_PARAM_TSILENCE":
}
}
]
}
}
]
}
]
}

The binary data of a context is either created off-line with one of the context
creation tools, or created at runtime using a Dynamic Content Consumer
(DCC). Contexts that are created off-line can be much more complex and
larger than those created at runtime.

Contexts describe what user can say because they contain sentences. A
sentence is a sequence of terminals. A terminal is roughly the same as a
word. The term terminal is used because a name like New York which
contains spaces can also be considered 1 terminal whereas many people
see it as 2 words because of the spaces. As we will see later we can also
associate other information with terminals.

Cerence ASR (Embedded) has several approaches to the creation of
binary contexts which can be divided in 2 categories.

The first category are the approaches which treat the context as a list the

set of possible sentences. A particular sentence can be in the context or it
is not in the context. If a sentence is not in the context then it can never be
recognized! The set of sentences may be infinite, for example a sequence
of digits of arbitrary length. Human language also contains potentially
infinite constructs like the embedded clause. The sentence: the car which
is green has been owned by John and was constructed in 1979 and ... may
go on forever.

Where the set of sentences in a context is potentially infinite, the set of
terminals is always finite. The set of terminals in a context is often referred
to as the vocabulary of a context.

If the user speaks a word (terminal) that is not in the context then we say
the word is out of vocabulary, often abbreviated as OOV. Take for example
a context which describes 1 sentence: today it is warm outside. This
context contains 5 terminals. If the user says today it is hot outside then the
word hot is out of vocabulary.

The sentence warm outside is today it has no out-of-vocabulary words but
is not in the context. This sentences is out of context. The term out of
grammar is often used in the same meaning.

Cerence ASR (Embedded) recognition contexts for list of sentences can be
built from a text description called a grammar. They are built with the tool
grmcpl. These contexts and the grammar are the main topic of this
document.

Cerence ASR (Embedded) also still supports so-called Field contexts. The
are contexts that are built from very large list of items plus structural
information. They are built with the tool fieldcontextcpl. This type of
context is however deprecated and being gradually replaced by solutions
based on statistical language models.

Contexts can be combined at runtime. It is possible to combine different
types of contexts although not all combinations are possible. Central to the
combination of context is the concept of slot. We will go into detail on slots
later, but imagine a slot being a place-holder inside a sentence of
something that is not known up-front. For example: | want to go from <city>
to <city> intuitively is a context which describes a booking question about
cities of which the list of cities is not yet known in advance.

As a general rule a context A can be combined with a context B if A
contains one or more slots. You can say that B is connected to A or that B
is embedded inside A.

The second approach to context creation is to use a statistical language
models (SLM). In this case each sentence is given a probability of
occurrence. The vocabulary of the context is still finite. So if a user speaks
a words that is not in context then the recognition engine will never
recognize it. Out of grammar sentences are theoretically not possible
because each sentence now has possibility of occurrence. There will be
however many sentences that have a probability which is close to 0 and
will therefore never be recognized. Statistical model based context can be
created with the tool ngramctxcpl or are provided by Cerence. For
example, the add-on for messaging dictation provides an SLM based
context.

Transcriptions

So far we talked about the terminals inside a context and the sentences
they can form. But we still don’t know how these terminals are pronounced.
To know how a terminal is pronounced you have to associate one or more
phonetic transcriptions to it.

Phonetic transcriptions are discussed in detail in the Cerence ASR
(Embedded) Pronunciation Tools package . Phonetic transcriptions are
typically tied to one language. When creating a context from data there are
typically 3 sources of phonetic transcriptions:

1. A dictionary is essentially a list of terminals along with their
transcriptions. Context creation tools can use more than one
dictionary. These dictionaries are searched in a particular order. If
only dictionaries are used and if a terminal is not in any dictionary
then the context cannot be created.

2. The common linguistic component is a system that constructs
phonetic transcriptions from the terminals. The system will do its
best to create the best possible transcriptions, but may
occasionally come up with an unintended transcription or is some
cases with no transcriptions at all (when trying to transcribe a
Chinese terminal with an English CLC system for example).

3. Some grammar formats allow phonetic transcriptions inside the
grammar. This will be explained further in this document.

Language Models

Starting with Cerence ASR (Embedded) the recognition context can be
separated in two parts. The first part, which corresponds to the recognition
context as described so far, contains the vocabulary of the task along with

the transcription information. This context remains dependent on the
acoustic model.

The second part contain the relations among the terminals. This is the
Language Model. This buffer is not directly dependent on the acoustic
model. It is possible to have several vocabulary contexts which correspond
to the same language model.

The messaging dictation add-on provides a vocabulary context along with a
language model.

Language model buffers are currently only provided by Cerence directly.
The is no tool in this package to create them.

grmepl

This document gives the pre-requisites to run Cerence ASR (Embedded)
tools and explains the basic command line syntax. In the rest of this
document we will assume that we are starting the tool from the tools
directory. If you install your tools on a Windows PC in the default location of
the tool then you will find the tools at:

c:\\ProgramData\\cerence\\tools\\cerence_asr_embedded_vx_y z\\ve

The easiest way to experiment with tools is to start a tools prompt from the
Start Menu which you find at Cerence >
Cerence_ASR_Embedded_Tools_Prompt.

Let's assume we've created a directory csdk in the home direcory. And in
this directory we created sub-directories bnf and ctx. This can done as
follows:

cd %USERPROFILE%;
mkdir csdk csdk\bnf csdk\ctx
cd csdk

Hint:

You can enter the examples in your favorite editor, save them in
the %USERPROFILE%\csdk\bnf directory, and then run the command
line examples while reading the text. We will assume for the rest of
this tutorial that we’re running the samples in the directory bnf.

Let us now look at our first example of a grammar:

#BNF+EMV2.1;

lgrammar cdd;

Istart <main>;

<main> : lrepeat (<digits>, 1, *);

<digits> : @ | 1| 2|3 |4 |5]|6]|7]|8]9;

Paste this grammar in your favorite editor and save it in the directory bnf.
First we will compile this grammar with the tool grmcpl which is started by
the following command-line:

> grmcpl -g bnf\cdd.bnf -1 enu -C ctx\cdd.fcf --bufferSpec=enu -

As a result you will find a file cdd. fcf in the directory ctx which you can
use for example in the Companion SDK tool recog_test.

The compilation process

Binary contexts can be built from one or more grammar files. BNF+ and
JSGF grammars are used to build infermediate files which use a file format
called XLF (eXtensible Language Format). A context is created from an
XLF file. One or more XLF files can be merged together. A diagram of the
organization of the compilation process (grammar, XLF files, and binary
context) is shown in the following figure:

We will now continue to explain the use of the Cerence BNF+ grammar
format. The BNF+ format is historically the native format for Cerence ASR
(Embedded) engine, this format has most features and is the preferred
format to use if you start a new application.

It is preferred to encode grammars in UTF-8 [1]

[1] Many tools, including grmcpl, also support UTF-16 encoding, but the Cerence
ASR (Embedded) API supports only UTF-8. We recommend therefore to use
UTF-8.

Verifying the coverage of your grammar

As grammars become larger it becomes too hard to check whether your

grammar covers the sentences you intend it to recognize. Also, your
grammar may recognize sentences that should not be recognized at all.

To help testing grammar coverage we have the tool ctxverify. Let’s take
our example grammar and make ctxverify generate some sentences:

> ctxverify -g bnf\cdd.bnf --mode=generate --maxSentlLen=3

This will generate output like the following:

00

000
001
00 2

You can see all the accepted utterances for this particular grammar which
consist of at most 3 words. You can also check whether a particular
sentence is in the grammar:

ctxverify -g bnf\cdd.bnf --mode=check

Will give you a prompt. Try entering 1 2 3 4 5 and you will get:

>ctxverify.py -g bnf\cdd.bnf -m check

Compilation of grammar 'bnf\cdd.bnf' to x1f succeeded

Type a sentence after '>', then press 'return' to check the sent
To stop checking type Ctrl+Z and press ‘return’

>12345

IN: 12345

UNIQ: 1 2 3 45

The Cerence BNF+ grammar format

Basic Grammar Concepts

BNF+ is based on the concept of Context Free Grammars (CFGs). The
core of a context free grammar is a collection of grammar rules. Each rule
describes an allowable structure and gives it a name. An example of a
grammar rule in BNF+ might be as follows:

<date>: the <day> of <month> <year>;

<date>, <day>, <month>, and <year> each represent rules; <day>, <month>,
and <year> must be defined elsewhere. With the proper definitions, the
input phrase the fourth of July 1776 will match the above rule.

In a grammar, any symbol that represents another set of symbols is called
a non-terminal symbol, or non-terminal. In this rule definition, the symbols
<date>, <day>, <month>, and <year> are all non-terminals. Any symbol that
is complete in and of itself (that is, it needs no further specification) is
called a terminal symbol, or terminal. In this rule definition, the words the
and of are terminals. A terminal symbol is sometimes referred to as a word
even though it may in fact be a quoted string of several words, like "New
York City".

Notation
BNF+ uses a C-like syntax:

e Grammars are composed of statements terminated by a semicolon:

e Comments can be line comments which start with // or block
comments where the comment text is surrounded by /* and */.

e Parentheses (and) can be used to group things together.

Statements, rules, and symbols in BNF+

Imagine a snack bar in the not-so-distant future. Naturally, the computer
needs to recognize the customers’ orders. The BNF+ grammar below could
be used in such a situation:

#BNF+EMV2.1;
lgrammar Drinks;
Istart <Speech>;

<Speech>: lemonade | milkshake | orange juice;

You can compile this grammar, which is assumed to be saved as
drinks.bnf, into a recognition context with the following command line:

> grmcpl -g bnf\drinks.bnf -1 enu -C ctx\drinks.fcf --bufferSpec

The resulting context file drinks.fcf can be loaded in the recog_test tools
of the companion SDK.

This grammar allows users to order either a lemonade, a milkshake, or an

orange juice. The first two lines of the grammar start with an exclamation
mark (!) followed by a word. These words are directives, which means they
are words that have special meaning to the grammar compiler.

The grammar contains non-terminals, which, as previously described,
represent rules. The name of a non-terminal can be any combination of
almost any character from the unicode character set, excluding the “greater
than” symbol (>) and the “less than” symbol ().

The hash or pound (#) symbol has a special meaning which is explained in
the section Importing and exporting rules in BNF+.

The name of the non-terminal is enclosed by angle brackets (< >). BNF+
has three reserved non-terminals <vVOID>, <NULL> and <...>. The function of
each of these non-terminals is explained later. When non-terminals appear
at the beginning of a statement (in front of a colon :), they define a rule;
when they appear in the middle of a statement (after a colon) they refer to
that rule. In the sample grammar for the drink orders, only one non-terminal
can be recognized: <Speech>.

A terminal can be written in 2 ways. The most straightforward way is to
write it enclosed by double quotes, for example "The Recognition Bar".
You can write pretty much any sequence of printable characters between
quotes. You can also omit the quotes but then the set of allowed characters
is restricted to script characters. Obviously you can also not write non-
quoted terminals with white-space inside them, because the white-space
indicates where a non-quoted terminal starts and ends. The specification
section at the end of this document specifies exactly which characters can
be used inside quoted and non-quoted terminals.

All grammars start with a header; for BNF+ grammars the header is
#BNF+EMV2.1; The header is required and must be on the first line of the
file. The headers may not be preceded by any character including white
space; the only exception is the UTF-8 Byte Order Mark (oxef @xbf @xbe)
which is ignored by the compiler.

Let us now take a closer look at the first statement. This kind of statement
is called a grammar statement. It contains the directive ! grammar, followed
by the grammar name. It ends with a semicolon (;).

Grammar statements are required. The combination of a grammar name
and a rule name is used to uniquely identify the rules when using multiple
grammars. Such a combined rule is called a fully qualified rule. In the
example above the fully qualified name of the rule <Speech> is

Drinks#Speech. In the Cerence ASR (Embedded) API you will have to refer
to rules by their fully qualified name. Note that the angled brackets are not
part of the rule name!

The second statement in the example is a start statement. Start statements
begin with the directive !start, followed by one or more non-terminals and
a semicolon. Start statements provide entry points into the grammar. Thus,
they define what can be recognized. In this case, it is the rule identified by
<Speech>.

This leaves us with the final part of this grammar: the definition of the rule
<Speech>. This is a rule statement. A rule statement is made up of a non-
terminal (sometimes called the rule name) followed by a colon, which is
followed by the definition of the rule and a semicolon. In this example, the
right-hand side consists of three phrases, separated by the or operator (|).
It indicates that the non-terminal <Speech> is defined as “lemonade” or
“milkshake” or “orange juice.” Each of these phrases is an alternative of the
rule with the name <Speech>.

Due to the start statement <Speech> is a start rule. Since there is only one
start rule the conclusion is that only the three drinks defined in body of
<Speech> can be recognized.

In the example above, the right-hand side of the rule <Speech> contains
only terminals. In general, the right-hand side of a rule can also contain
non-terminals or a mixture of terminals and non-terminals. The following
grammar shows such a situation:

#BNF+EMV2.1;

/* This grammar allows the user to order a hamburger and fries i
to the drinks. */

lgrammar Order;

Istart <Speech>;

<Speech> : <Drink> | <Food>;
<Drinks> : lemonade | milkshake | orange juice;
<Food> : hamburger | "French fries";

Notes:

¢ All non-terminals in a grammar that are not specifically declared as
imported (see Importing and exporting rules in BNF+) must be
defined in that grammar.

e Within a grammar, a certain rule can be defined only once. The
scope of a rule is local to the grammar where it is defined (unless it

is exported; see Importing and exporting rules in BNF+). Therefore,
the same private rule name can be re-used in several grammars
that are merged into one context, without introducing conflicts.

e A combination of rules, terminals, pipes, parentheses and other
operators is called an expression. For example (a | (| "c"))
is an expression, (| "c") is also an expression. The exact
definition of an expression can be found in the section
BNF+EMV2.1 Syntax at the end of this document.

Let us revisit the compilation command line:

> grmcpl -g bnf\drinks.bnf -1 enu -C ctx\drinks.fcf --bufferSpec

Why is the --bufferspec option needed? This option tells the compiler to
use the CLC component for American English (ENU) to look up phonetic
transcriptions for the terminals in the grammar. If we would not add this
option then the compiler would tell us the it has no transcriptions for all
terminals in the grammar.

Optional recognition

Optional Recognition in BNF+

Assume that we would like to add some politeness statements to the
grammar. We would do this to cover better what the user may say. Let’s
say we allow the user to say “please” at the end of the command, but we
don’t want to make the use of “please” required. We would write a grammar
like the following to express the fact that “please” is optional:

#BNF+EMV2.1;
lgrammar polite_drinks;
Istart <Order>;

<Order>: <Drink> !optional(please);
<Drink>: a lemonade | a milkshake | an orange juice;

The above grammar has the same result as the one below:

#BNF+EMV2.1;
lgrammar polite drinks long;
Istart <Order>;

<Order>: <Drink> | (<Drink> please);
<Drink>: a lemonade | a milkshake | an orange juice;

It may seem useless to introduce a whole new concept to the grammar-
specification format when such a trivial workaround is available. In complex
grammars, however, it will be an asset to have this option.

Notes:

e Any expression can be made optional.
e Square braces are a convenient shorthand for the directive
loptional: !optional(x) can also be written as [x].

Repeated recognition

Repeat in BNF+

It is not unlikely that a customer would like to order multiple drinks. This
can be done as follows:

#BNF+EMV2.1;

lgrammar 3_drinks;

Istart <Speech>;

<Speech>: <Drink> <Drink> <Drink>;

<Drink>: lemonade | milkshake | orange juice;

Although this works fine, there is a major drawback: the above grammar
forces customers to always order three drinks. The following grammar
overcomes this problem:

#BNF+EMV2.1;

lgrammar 1_to_3 drinks;

Istart <Speech>;

<Speech>: <Drink> | <Drink> <Drink> | <Drink> <Drink> <Drink>;

<Drink>: lemonade | milkshake | orange juice;

This is a good solution, but it again gives rise to problems if a range of up
to 10 orders is desired. Of course, all possible combinations can be written,
but this would be a lot of work. A better way is demonstrated in the

grammar below:

#BNF+EMV2.1;

lgrammar 1_to_10 drinks;

Istart <Speech>;

<Speech>: !repeat(<Drink>,1,10);

<Drink>: lemonade | milkshake | orange juice;

A new directive has just been introduced: !repeat(argl, arg2, arg3). The

first argument (arg7) is the expression to repeat, arg2 is the minimum
number of iterations, and arg3 is the maximum number. The above
grammar therefore models a situation in which a customer can order up to
ten drinks.

Notes:

e The third argument can also be a star (*). This symbol is used to
specify an undefined (unlimited) number of repetitions. However, if
the maximum number of possible iterations is known, you can also
specify this number rather than using the star. This avoids having
to check in the result processing code whether more than the
maximum number of repetitions occurred. A finite number of
repetitions usually leads to bigger recognition contexts.

e The maximum number of repetitions should be larger or equal to
the minimum number of repetitions.

¢ 0 is a valid value for the minimum number of repetitions. In this
case the repeated expression is also made optional.

The first argument can be any expression (a formal definition of BNF+
is given below).

There are two other ways of phrasing a repeated expression in specific
circumstances:

Any expression can be followed by a * or a +:

expression* is a shorthand for !repeat(expression,o,*).
expression+ is a shorthand for !repeat(expression,1,*).

The number of arguments in !repeat can be reduced:

Irepeat(expression, *) is a shorthand for
Irepeat(expression,0,*).
Irepeat(expression,+) is a shorthand for
Irepeat(expression,1,*).

Examples of a standalone BNF+ grammar

The following grammar is a bit more complex using all the structures
discussed so far. It lets the users say the number of each drink they would
like, instead of forcing them to repeat the drink itself. In BNF+ this grammar
becomes:

#BNF+EMV2.1;
l'grammar a_lot _of drinks;

Istart <Speech>;

<Speech>: !repeat(<Order>,1,3) please;
<Order>: <Single Order> | <Multiple Order>;
<Single Order>: one <Drink>;

<Multiple Order>: <Count> <Drinks>;
<Count>: two | three | four |five;

<Drink>: lemonade | milkshake | orange juice;
<Drinks>: lemonades | milkshakes | orange juices;

Valid orders would include:

e one lemonade one orange juice please
¢ three milkshakes five lemonades one orange juice please

But also the more unlikely:

e One orange juice one orange juice please
¢ five milkshakes two milkshakes one milkshake please
e four orange juices one milkshake one orange juice please

The following are not valid:

e one orange juice one milkshake one lemonade (because please is
not optional)

e one lemonades please (because the plural form lemonades can only
follow <Count>).

Recursion

Warning:

Recursion is not allowed in BNF+.

Referencing a rule in its own definition (right hand side) is called recursion.
Recursion can be direct, when rule references itself in its definition, or
indirect, when there is a cyclic dependency between rules.

Example of direct recursion in BNF+:
<GNU> : <GNU> is Not Linux;
Example of indirect recursion in BNF+:

<A> : bear who says <QUOTE>;

<QUOTE> : I am <A>;

Combining Grammars

Importing and exporting rules in BNF+

It was stated earlier that each non-terminal referenced in a grammar must
be defined in that grammar, with one exception. That exception is for non-
terminals brought into the grammar from another grammar via the !import
statement. When a non-terminal is imported, the compiler understands that
the definition of that particular non-terminal will be coming from another
grammar. When a context is created from a grammar containing imported
non-terminals, that context should also include the grammar(s) exporting
that non-terminal.

Here is an example of how this feature can be used:

snack_shop.bnf

#BNF+EMV2.1;
l'grammar snack_shop;
lexport <Food>;

<Food>: pizza | hamburger | hot dog;

bar.bnf

#BNF+EMV2.1;

lgrammar bar;

Istart <Order>;

I'import <snack_shop#Food>;

<order>: <Food> | <Drink>;
<Drink>: a lemonade | a milkshake | an orange juice;

The first grammar models a restaurant that serves hamburgers, hot dogs
and pizzas. In the second grammar, this model is reused to model a bar
that can serve food and drinks. When the context is created, both
grammars need to be supplied to the grammar compiler.

This example can be compiled with the following command:

> grmcpl bnf\snack shop.bnf,bnf\bar.bnf -1 enu -C ctx\bar.fcf --

The compiler figures out automatically that bar.bnf uses snack_shop.bnf¥.

Therefore bar#0rder is the only start rule in the resulting context.
Notes:

¢ An exported non-terminal is not automatically a start non-terminal,
so if one wants to use the first grammar as a stand-alone, <Food>
needs to be declared as a start non-terminal.

¢ If a grammar with a start rule is used inside another grammar then
the I'start of the imported grammar is ignored.

e If 2 grammars a compiled into one context and if they do not use
rules from the other then the start rules from both grammars are
visible in the final context.

¢ You need to specify from which grammar you want to import the
rule. The grammar name acts as a name space for rules. This is
why grammar names are required.

e Importing is useful for splitting the grammar specification over
several grammars. It allows for the writing of modular grammars.
Frequently used grammars (for example, for recognizing phone
numbers and dates) can be written in separate grammars.

¢ Rules must be defined in the grammar from which they are
exported. Rules cannot be defined in a grammar to which they are
imported.

e Circular imports are not allowed. Each of the grammars in the
following example is legal as a standalone grammar but they will
not compile together because they import rules from each other:

snack_shop.bnf

#BNF+EMV2.1;
lgrammar snack_shop;
limport <bar#Drink>;
lexport <Food>;

<Food>: pizza | hamburger | hot dog;

bar.bnf

#BNF+EMV2.1;
lgrammar bar;
Istart <Order>;

limport <snack_shop#Food>;
lexport <Drink>;

<Order>: <Food> | <Drink>;
<Drink>: a lemonade | a milkshake | an orange juice;

e Imports are resolved during the merging step of the context
compilation process. All grammars must be present at that moment
if you want to create a recognition context.

Pronunciations

The pronunciation of words used in a context can be specified in several
different ways in Cerence BNF+ grammars. By default, the words used in
the grammar are passed to a grapheme-to-phoneme expert system (CLC),
which converts them to sequences of phonemes. Alternatively, a dictionary
of phonetic transcriptions can be used. If you want to use a dictionary, you
must specify the dictionaries when calling the grammar compiler. Words for
which there are transcriptions in the dictionary will not be passed to the
CLC expert system. Pronunciations can also be specified directly in the
grammar via !pronounce statements or !pronounce directives.
Pronunciations inside grammars take precedence over transcriptions
specified in dictionaries or supplied by the CLC expert system. The next
two sections describe !pronounce statement and !pronounce directive in
more detail.

To summarize, the precedence order for the source of word transcription is:

1. 'pronounce directives in the grammar.

2. !'pronounce statement in the grammar.

3. Transcriptions supplied in the dictionary passes in option
--clcOverrideDictionaryFilepath used when compiling the
grammar.

4. Transcriptions provided automatically by the CLC component,
possibly with the assistance of user dictionaries passed in
--userDictionaryFilepaths

A test dictionary

In the directory dct create the following dictionary:

[Header]
Language=enu

[SubHeader]
Content=EDCT_CONTENT_BROAD_NARROWS
Representation=EDCT_REPR_SZZ STRING

[Data]
coffee // "#'kO.fi#t"
coffee // "#'kA.fi#t"

We have to compile this text dictionary into a binary dictionary. This is done
with the command:

> dictcpl -i dct\bar.dct -o dct\bar.dcb

In the bnf directory we modify bar.bnf by adding the drink coffee:

bar.bnf

#BNF+EMV2.1;
lgrammar bar;
Istart <Drink>;

<Drink>: lemonade | milkshake | orange juice | coffee;

Compilation options

If you want to use one or more dictionaries for compilation you use the -d
or --userDictionaryFilepaths option:

> grmcpl bnf\bar.bnf -d dct\bar.dcb -1 enu -C ctx\bar.fcf --buff

This --userDictionaryFilepaths option will instruct the CLC component
that it has to use user-specified transcriptions for the word coffee. Please
refer to the documentation of the pronunciation tools for more information
on pronunciation generation.

You can use multiple dictionaries as in:

> grmcpl -g my grammar.bnf -C my_grammar.fcf -d my dict 1.dct;my

In this case the transcription for a terminal t will be chosen from the left-
most dictionary on the command-line which contain a transcription for t. In
other words: if both my_dict_1.dct and my_dict_2.dcb contain transcriptions
for the terminal t then the transcriptions from my_dict _1.dct will be used
and those in the second grammar will be unused.

Grammar-wide pronounces

Imagine the addition of coffee to the list of drinks. This is a bit of a problem,
because in American English there are two different transcriptions for this
word: (in L&H+ format #'ko.fi# and #'kA.fi'#). Normally, there should not
be a problem because the phonetic expert system, the CLC module,
together with the standard dictionary will automatically generate the most
commonly used transcriptions for a word (for instance, 0 will be transcribed
as “zero” and “oh”). But for “coffee” (and for some other words) this is not
the case. Only the most general transcription will be used. If the alternative
or perhaps both transcriptions are desired, the !pronounce directive must
be used. The following sample grammar provides a possible solution:

#BNF+EMV2.1;

lgrammar bar;

Istart <Drink>;

Ipronounce coffee "#'kO.fi#"|"#'kA.fi#t";

<Drink>: lemonade | milkshake | orange juice | coffee;

In the above grammar, the pronounce statement tells the engine what
phonetic transcription(s) have to be used for the word coffee in that
particular grammar. The !pronounce directive should always be followed by
the terminal (a single word or a double quoted string) for which you wish to
provide the transcription. The second argument, the transcription itself,
must be a quoted string preceded by an optional header.

Notes:

e Use the or-operator (|) to enumerate alternative transcriptions.
Each transcription is enclosed in double quotes. A header that
specifies the type of transcription can precede each transcription.
The default transcription type is the L&H+ phonetic alphabet. This
transcription type uses the header L&H. Thus:

I'pronounce coffee "#'kO.fi#";
is exactly equivalent to:
I'pronounce coffee L&H "#'kO.fi#";

¢ A second way of specifying a transcription is by reference to
another terminal. This transcription type uses the PRONAS header,
which is an abbreviation for “pronounce as.” Thus:

I'pronounce hi PRONAS "hello";

means that hi must be pronounced as hello, or, in other words, the
phonetic transcription(s) for “hello” will be the transcription(s) of
“hi.” This functionality can also be used to associate a terminal with
its “userword” transcription. Userword transcriptions are
transcriptions that are automatically created by the recognition
engine in the course of userword training. Such a userword
transcription can be added to a dictionary, together with its
dictionary entry (this is usually the word for which a userword has
been trained).

An interesting application of PRONAS is for Mandarin Chinese.
Here we can use PRONAS to transibe hanzi symbols using pinyin
instead of phonetic transcriptions:

Ipronounce FE PRONAS "zhongl guo2"; /* PinYin */
If we had use an L&H+ transcription we we will have to write:

Ipronounce FIE "t&s+055nK.kw035"; /* L&H+ */

By using one of these statements, the word "=E" can be used
directly in the BNF and the string result will contain the hanzi
symbols. In the first case, the Hanyu pinyin transcription is
converted by the CLC; in the second case, the CLC is overruled by
the phonetic transcription in the grammar.

The same argument holds for Japanese where the pronunciation of
Kanji characters can be done by using hiragna or katakana with
PRONAS.

Word-specific pronounces

The !pronounce directive can also be used within the rules. In this way,
different instances of the same terminal within a grammar can have
different transcriptions. For example:

#BNF+EMV2.1;
lgrammar dif_pron;
Istart <difPron>;

Ipronounce read "#'R+id#";
Ipronounce record "#'R+E.k$R+d#";
<difPron>: I have read !pronounce("#'R+Ed#") a book |

We record !pronounce(L&H "#R+I.'kOR+d#") a record;

Note:

The !pronounce directive follows the terminal for which it specifies
the transcription. Alternative transcription types and alternative
transcriptions can be specified in the same way as in the
pronounce statement.

The transcriptions that are specified with a !pronounce directive on
a specific instance of a word supersede the transcriptions that are
specified for that word with a pronounce statement.

Character set and CLC

Grammars must be written in the UTF-8 encoding of Unicode. When
passing text data to the Cerence ASR (Embedded) API, it must be
encoded in UTF-8. As mentioned before, the terminals in the grammar and
the rule names can use any combination of characters from the character
set except the reserved characters. However, there are some additional
limitations on the character set used for terminals when the CLC expert
system is called to generate transcriptions. Since the CLC expert system is
designed to handle grapheme-to-phoneme conversion in a given language,
it requires input sequences of characters that are acceptable words for that
language in order to produce meaningful results. For instance, a French
CLC module will not interpret Cyrillic characters correctly. If dictionaries or
pronounce statements are used, the character set does not have these
additional limitations.

User IDs in BNF+

The !id directive allows the user to specify a User ID for a terminal. The
User ID must be an unsigned 64-bit integer. This feature can be used to
make the grammar language independent or to process similar words in a
uniform matter. The following example illustrates this:

begin !id(1) | start !id(@x00000001) | initiate !id(aAQ==)

As the same User ID is specified for each of these words, the application
doesn’t have to map them to the same meaning, because this is already
specified in the grammar. User IDs never appear in the recognized string.

User IDs have a default ID of 204 — 1 = OxFFFEFFFFFFFLFFeT.

As seen in the example user IDs can be written in decimal (1), hexadecimal
and in base64 form.

Functional note:

User IDs can be found in the JSON result string. Refer to the Cerence
ASR (Embedded) Runtime documentation for more information.

Runtime modification of grammars

Modification in BNF+

Sometimes the entire specification of the grammar is not known until run-
time. In this event, the grammar needs to be modifiable, or, in other words,
some of its rules need to be modifiable.

Cerence ASR (Embedded) allows to attach several types of context to a
modifiable rule. Rules can be modified only if the !'slot statement is used.
Following grammars is an example of the use of the !slot statement:

#BNF+EMV2.1;

lgrammar modifiable_ grammar;
Islot <names>;

Istart <phone dialer>;

<phone dialer>: l!loptional(Please) call <names>;

Before the addition of a context with names to the context which is
compiled from this grammar, this grammar can never return a result.
However, because the !slot statement was used, a context can be
attached to the <names> non-terminal at runtime. The modification of the
compiled context happens with the connection keys in the JSON
specifications. Important to remember is that you have to refer to the name
of the slot with its full name: modifiable_grammar#names!

You cannot redefine slot rules in the same grammar. The following
grammar is illegal:

#BNF+EMV2.1;

lgrammar modifiable_grammar;
Islot <names>;

Istart <phone dialer>;

<phone dialer>: l!optional(Please) call <names>;
<names>: John Doe; // Illegal!! <names> cannot be defined: it's

Tags in BNF+: A simple semantic annotation

Tags are a mechanism to identify (tag) parts of the recognized sentence.
We first explain the reason for introducing tags. Then we introduce the !tag
directive and its syntax.

Silence terminals as markers

As we saw in previous section user IDs are linked to terminals. However
we often don'’t really care to which terminal a user ID is associated.

For example, we could use user IDs as a mechanism to indicate sentence
properties. We don’t care where the user ID is located as long as it is found
somewhere in the sequence of output terminals. An often used technique
to insert user IDs at arbitrary locations in the grammar is to define a
terminal with transcription silence and give this terminal a user ID:

#BNF+EMV2.1;

lgrammar silence with _id;
Istart <start>;
Ipronounce _ "##";

<start>: this is a sentence with a identifier _ 1id(1234);

User IDs are also used to identify parts of sentences in the output. This is
done by sandwiching a part of a grammar, for instance a rule, between
silence terminals with user IDs:

#BNF+EMV2.1;

lgrammar expression with_silences;
Istart <start>;

Ipronounce _ "##";

<start>: this is a <rule>;
<rule>: _ 1id(1234) (hot dog | burger) _ 1id(1234);

In the result this leads to two instances of the terminal _. These instances
are ‘real’ terminals because they have a different begin and end time.

Slots as markers

Slots also appear in the result in a way that marks the location of the slot in

the utterance. Therefore users sometimes use slots as an NLU mechanism
without having need for the extension properties of the slot:

#BNF+EMV2.1;

lgrammar slot for tagging;
Istart <start>;

Islot <rule>;

<start>: this is a <rule>;

Using a slot this way complicates matters for the user.

Tagging of expressions

Silence nodes are a trick which should be used with care. One silence
node often has little effect on accuracy, The issue is that if we use too
many of them it does effect performance. For larger projects we
recommend to switch to Statistical Language Models with a sem3 rule-
based NLU grammar.

The !tag statement allows us to insert strings and/or user IDs without
requiring something to be recognized. A tag can be associated with any
expression. The tag can identified with a string, a user ID or both:

#BNF+EMV2.1;
Igrammar string_and_id_on_expression;
Istart <start>;

<start>: a <rule> please;
<rule>: !tag(FOOD!id(9999), hot dog!id(111) | burger!id(222));

With only a user ID:

#BNF+EMV2.1;
lgrammar id_on_expression;
Istart <start>;

<start>: a <rule> please;
<rule>: !tag(!id(9999), hot dog!id(111) | burger!id(222));

With only a string:

#BNF+EMV2.1;
lgrammar string _on_expression;
Istart <start>;

<start>: a <rule> please;
<rule>: !tag(FoOD, hot dog | burger);

As we will see in the section on results the output of tag statement is very
similar to that of the slot statement.

Note that the string inside a tag is not a terminal, it does not require
transcriptions. from the result point of view a tag behaves more like a rule
than a terminal.

Empty tags

It may be useful to insert a single tag, not associated to any expression or
terminal. This can be done as follows:

#BNF+EMV2.1;
lgrammar isolated_tag;
Istart <start>;

<start>: this is a !tag(TAG!id(1234),<NULL>);

Refer to the section Null Rule for a more complete description of the null
rule.

Tags in the result

In the result tags are also fully qualified with the grammar name, just like
rule names. For example: “this is a hot dog” will produce the following
JSON result. (We omit confidences, scores and timings):

{ "resultType": "NBest",
"hypotheses": [
{ "startRule":"string and_id_on_expression#start”,
"items": [
{ "type": "terminal",
"orthography": "a",
b
{ "type": "tag",
"name": "string_and_id_on_expression#food",
"userID.hi32":0,
"userID.l032":9999,
"items": [
{ "type": "terminal",
"orthography": "hot"
¥

{ "type": "terminal",

"userID.hi32":0,
"userID.lo32":111,
"orthography": "dog"
}
]

b
{ "type": "terminal",

"orthography":"please"
}

For the empty tag the result will be:

{ "resultType": "NBest",
"hypotheses": [
{ "startRule":"string and_id_on_expression#start”,
"items": [
{ "type": "terminal",
"orthography": "this"

{ "type": "terminal",

n"e n

"orthography": "is

{ "type": "terminal",

"orthography": "a

}s

{ "type": "tag",
"name": "string and _id on_expression#TAG",
"userID.hi32":0,
"userID.lo32":1234

}s

Relation between slots and tags
Slots can been seen as an union of 2 orthogonal features:

1. The capability to dynamically attach another context to a context.
2. |dentification of parts of the grammar in the result; which is the
same as lags.

From this follows that is logical to represent slots and tags identically in the
output. In fact, slots can be viewed as automatic tags. The tag of a slot is
its rule name.

Pre-filled slots and tags

A fully qualified rule name grammar#rule may also be a tag name. We do
not prevent this as this does not cause problems. On the contrary this
property can used to achieve the effect of a pre-filled slots with FST
contexts:

#BNF+EMV2.1;

lgrammar prefilled_slots;
Istart <start>;

Islot <rule>;

<start>: a (<rule>|!tag(rule, pre-filled content)) please;

Rule Activation

There may be times when you want to recognize only certain rules in a
grammar. Take for example a grammar with a wake-up word. When using a
wake-up word, you can deactivate the entire grammar except for the wake-
up word. After the wake-up word is recognized, the rest of the grammar is
activated and the wake-up word is deactivated. The !activatable directive
is used to specify which rules can be activated and deactivated.

The following is an example of a grammar using the activatable statement:

#BNF+EMV2.1;

lgrammar activatable_example;
Istart <top-rule>;

lactivatable <wake-up>;
lactivatable <rest-of-grammar>;

<top-rule> : <wake-up> | <rest-of-grammar>;
<rest-of-grammar>: send e-mail | start web browser | [go to] sle
<wake-up>: computer;

Presumably, in this grammar, the user would like to activate the rule <wake-
up> and deactivate the rule <rest-of-grammar> until the terminal Computer
is recognized. Then the user will want to activate the rule <rest-of-
grammar> and deactivate the rule <wake-up>. As soon as [go to] sleep is
recognized, the reverse operation can take place, deactivating the rule
<rest-of-grammar> and activating the rule <wake-up>.

Notes:

e Start-rules are by definition activatable.

e The default state of a activatable rule is “active”. When a context is
created in the Cerence ASR (Embedded) API, all rules are active
until they are de-activated.

e An imported rule can only be activated or deactivated in the
grammar where it is defined and exported. Activating or
deactivating an exported rule will cause that rule to be activated or
deactivated in all grammars where it is imported.

Special rules and terminals

BNF+ has special two special rules: <NULL> and <vOID>. These rules are
universally defined and therefore don’t have to be imported. They cannot
be redefined.

There is also a construct to match “any speech”. In BNF+ this is done with
areserved rule <...>.

Garbage or Any Speech

Garbage or any speech is way of absorbing parts of speech which are not
known in advance.

The use of the garbage model should be limited. Refer to the description of
the garbage penalty parameter LH_REC_PARAM_GARBAGE in the Cerence ASR
(Embedded) API Reference for more information.

Garbage in BNF+

In the examples, several different ways to take an order have been
modeled. But sometimes the exact phrasing is unknown. For example, you
may know that a customer will order a drink from the menu, but not how the
customer is going to phrase the order.

In such cases, it is only possible to check for specific words in a larger
phrase. This is called keyword spotting. This method requires the garbage
rule <...>, which models any speech. Here is an example of its use:

#BNF+EMV2.1;
lgrammar order_with _garbage;
Istart <Order>

<Order>: <...> <Drink> <...>;
<Drink>: lemonade | milkshake | orange juice;

Whatever speech or noise the garbage model absorbs will not appear in
the recognition result. In the previous grammar example, only “lemonade”,
“milkshake,” or “orange juice” can be in the recognition result, but the user
may have said: /| want a lemonade please. The first instance of <...>
matches | want a, the second matches please.

Null and Void Rules

Null Rule

<NULL> is a special rule that is automatically matched. That is, it is matched
without the user speaking any word. So the rules:

<WithNull> : an <NULL> orange juice <NULL> please // BNF+;
are exactly equivalent in recognition to the rules:
<WithNull> : an orange juice please // BNF+;

Note:

e In BNF+ !optional(x) has the same effect as (x | <NULL>).

Void Rule

<VOID> is a special rule that doesn’t match anything. That is, it can never be
spoken. Inserting <voID> into a sequence of grammar symbols
automatically makes that sequence unspeakable. So the rules:

<WithVoid> : an <VOID> orange juice please; // BNF+

would never be matched in recognition.

Uses of <NULL> and <VOID>

In the BNF+ grammar format, empty rules and empty alternatives are
disallowed. Instead, the grammar developer must use <NULL> or <VOID> in
order to specify which behavior is wanted. So, again, empty definitions of
rules and alternatives are illegal:

/* illegal BNF+ rules */
<rulename> : ;
<another rule> : word | ;

But definition of a rule or alternative as either <NULL> or <vOID> is legal:

/* Legal BNF+ */

<rulename2> : <NULL>;
<rulename3> : <VOID>;
<rulename4> : word | <NULL>;

<NULL> rules can be useful inside an expression surrounded by !tag. Refer
to Tags in BNF+: A simple semantic annotation for more information.

Design tips

The more your grammar is adjusted to the situation, the better the
recognition will be. The aim is to enable the engine to recognize all valid
commands and only those. Making sure all valid commands are included is
not too difficult. On the other hand, making sure that only those are
included may require more effort.

Even if you have a good model of the speech that is likely to be produced,
there are some other factors that may influence the quality of the
recognition. Sometimes the differences in grammars are subtle, and
grammars that seem to be the same may have different behavior. In the
following sections, some of the thorny issues will be tackled.

Phrases

There are two things to consider in the selection of phrases for recognition.
First, the longer the phrase is, the greater the amount of information that
will be available and the more accurate the recognition result will be.
Second, it is recommended that you use phrases that are as distinct as
possible. The following example illustrates two phrases that are not very
distinct:

I am going to the store vs. | am going in the store

As a rule of thumb, try to use longer and more distinct sentences.

Another problem is opposite words. Many of them sound very similar.
Typically, the only difference between the two resides in prefixes like “un-"
and “in-" (for instance, “popular” versus “unpopular”). It is good practice to
avoid these kinds of opposites. If a good alternative to such opposites
cannot be found, using them in longer sentences in which the “carrier”
sentences themselves are sufficiently different may help differentiate
between the two.

Double quoted terminals with spaces

Spaces inside double quoted terminals should be used with caution. The
use of quotes around a sequence of words turns that sequence into a
single grammar terminal, and as a result, the sequence is treated like a
single word. This has a number of consequences. A sequence of words
between double quotes will appear in the recognition result as a single
word , so there will be no confidence levels, nor segmentation information
for the individual words within that sequence.

Another consequence is that the optimizer of the grammar system may not
be able to merge a word from one sequence in quotation marks with
another occurrence of the same word in a different sequence in quotation
marks or in isolation. The FST search algorithm is less sensitive to this
phenomenon than the older LexTreeDP and TreeDP algorithms.

Spaces inside double quotes have an effect on the recognition and the
memory needs of the system. The phonetic transcriptions of double quoted
multi-word alternatives will usually contain underscores. E.g. the phonetic
transcription for “Bill Clinton” in ENU is #'bI1_'k1lIn.t$n#. Such
transcriptions are internally converted to two alternative transcriptions: one
in which all the underscores are modeled as silence and one in which all
the underscores are removed. This doubling of transcriptions has an
impact on the memory and CPU needs of the application. [2]

[2] One of the alternative transcriptions will contain no pause model between the
individual words, and the other will always contain the pause model between
the words. In this way, the engine still has some capacity to handle pauses
between words. However, this is less flexible than allowing optionally a pause
between each of the words, as the engine would do if the sequence of words
were not in quotation marks. In almost all cases, the CLC module will
produce the _ symbol on the word boundaries, so the behavior described
above is the default behavior. However, the user can force the engine to
either put or not put a pause model between the words that make up a string
in quotation marks by specifying the appropriate phonetic transcription for the
word sequence. Inside phonetic transcriptions, you can use the symbol ## to
force a pause model at that position. The symbol _ (word boundary) will
generate the two transcriptions as explained above. Avoiding these symbols
will give you a transcription without pause model.

Interaction

A context-free grammar is not a dictation grammar: users cannot just say
what they want. A grammar should be designed to handle specific
syntaxes. The design must be consistent to enable users to become
familiar with the context and anticipate expected responses. The use of

well-chosen prompts can also help. The less confused users are about a
possible response, the greater the chance that they will use a correct
command and the higher the accuracy of the recognition will be.

It is also important to give feedback so that the users will know that their
command has been correctly understood. Feedback should not be
overdone, however, because this can slow down the dialog. Many of the
best systems incorporate feedback into the dialog.

Limit the use of “special features” Although special features may help you
create the perfect grammar, their use often restricts the optimization of the
grammars, resulting in longer response times, and decreased accuracy.

The garbage model is somewhat special. It is actually “dangerous,” as it
models any speech. If you know what is going to be said, even though you
are not interested in it, listing this speech will provide better performance
than using the garbage model. Even if you know only a limited part of the
text that must be spoken, that text should be added with the garbage
model. Generally speaking, the more speech you can identify, the better
the results will be.

Similarly, be careful with repetitions. If you know the maximum number of
repetitions, it may be better to specify this number than to specify just *.
Trying to have the engine recognize 8 digits in a 7-digit telephone number
serves no purpose. Keep in mind that specifying the maximum number of
repetitions adds more memory to the grammar; this is especially true if
there is a large range of repetitions (for example, !repeat(<digit>, 1,
20)). If you are using a large range, it is recommended again that you use
an infinite maximum number because of memory considerations. Remeber
that your result processing code then has to filter out results with more than
20 digits!

Optimization

If there are common parts to a grammar, it is recommended that you
separate them from the specific parts, as in the following example:

what's your name | what's your address;
what's your (name | address);

In this example, both lines will recognize the same two utterances, but
without optimization the context created from the first line would have more
terminals than that of the second line. Context optimization will remove the
redundant terminals.

Note that !id statements may interfere with optimization. Changing the
previous example to the following example will block optimization:

what's !id(100) your name | what's your address;
what's !id(101) your (name | address);

Due to the different word ids the 2 instances of what's are no longer
equivalent. Pronounce directives may have the same effect:

what's !pronounce("#'wAts#") your name | what's your address;
what's !pronounce("#"huz#") your (name | address);

Vocabulary management

As explained earlier, only those phrases that are meaningful to recognize at
a given time should be active. Often, a context is a general representation
of the speech that can be spoken during the life span of an application, and
no context switching goes on during the application’s lifetime. This,
however, does not necessarily mean that all of the words in the
application’s context have a valid meaning all of the time. When possible,
the application should limit the number of active words in the grammar at
runtime. The fewer the number of words that are active at any point in the
grammar, the lower the branching factor will be; thus, the engine will be
able to recognize the words more easily.

Other elements that facilitate vocabulary management are activatable
rules, or rules that can be activated or deactivated.

Formal Specifications

Token Specification Format

The grammar is specified using the ABNF notation. [RFC2234] ABNF is an
internet standard for specifying the syntax of all kinds of text by means of
context-free formalism.

If we want to use characters as literals then we write them between single
quotes as in "(". The double quote itself is usually written as DQUOTE.

A token is specified by a rule. The following rule specifies a token that
consists of the letters ¢, o, k, e and n:

MY-TOKEN-NAME = "t" "o" "k" "e" "n"
As a convention we use uppercase letters in token names.
Letters can be grouped as in:

MY-TOKEN-NAME = "t" ("o" "k" "e") "n"

You can introduce alternatives with the forward slash (/) symbol. The
following rule says that taken is also a valid alternative for the MY-TOKEN-
NAME token:

MY-TOKEN-NAME = lltll (Iloll / llall) ||kll llell llnll

Repeating parts of an expression is also possible. The following rule says
that token, token , token _,... are alternatives for the token:

MY-TOKEN-NAME = lltll lloll llkll Ilell ||nll xm o on

Alternatively 1* means repeat 1 or more times, *1 means this part is
optional, 2*4 means this part is repeated between 2 and 4 times and 3*3
means this part is repeated exactly 3 times. For example:

MY-TOKEN-NAME = "t" lloll llkll Ilell llnll 2*4"_"

Sets of characters can be specified with a special syntax which uses a
character set code point. We will use the Unicode charactr set. This is
useful because Unicode often groups related symbols together. If we want
to specify a token that my only consist of letters but not the symbols of the
Latin-1 Supplement table then we write:

MY-TOKEN-NAME = %x00c0-00ff

You can add individual Unicode code points as follows:

MY-TOKEN-NAME = %x0020 / %x00c0-00ff

The previous example adds the space character to the allowed character
set.

[REC2234] Augmented BNF for Syntax Specifications: ABNF
(http://www.ietf.org/rfc/rfc2234.txt)

BNF+EMV2.1 Formal Specification

BNF+ aims as much as possible of the Unicode character set. The problem
is that “supporting the unicode character set” is a far reaching statement.
We try to allow pretty much everything inside quotes except:

i. Control characters (U+0000-U+001F,U+007F-U+009F)
ii. Surrogates (U+D800-U+DFFF)
iii. Replacement characters and byte-order marks
(U+FFFD,U+FFFE,U+FFFF).

For unquoted string we limited ourselves to a number of alphabetic scripts,
supplemented by a broad range of Chinese, Japanese and Korean code
points.

You will find the following notation UNICHR-XX. The symbols XX indicate a
general Unicode category value [UnicodeTR44]. For example UNICHR-N
denotes any unicode character with the number property.

We also used an extended notation X - Y to indicate all characters in X
minus those in V.

[UnicodeTR44] Unicode Character Database: Property Values
(http://lwww.unicode.org/reports
Itr4d4/#Property Values)

BNF+ Tokens

The following rules define common parts of token but are not recognized as
individual tokens:

NEW-LINE = %x000d %x000a / %x000a / %x0eed ; \r\n or \n or \r
DQUOTE = %x0022 ; "

WHITE-SPACE = %x0009 / %x000d / %x000a / %x0020 / %x00a0
; White space 1is generally, but not always, 1ignor

SIMPLE-SPACE = %x0009 / %x0020 / %x00a0
;5 Just white space between letters, no tabs or ne

ESCAPE-SEQUENCE = "\" ("n" / "r" / "t" / "v" / "\" / DQUOTE)
DIGIT = "e" / "1" / "2" / "3" / "4" / "5" / "e" / "7" / "8" [/ "9

HEX-DIGIT = DIGIT / "a" / "A" / "b" / "B" / "c" / "C" / "d" / "

BASE64-SYMBOL = %x0041-005a / ; A-Z
%x0061-007a / ; a-z
ll+ll / Il/ll / l|=ll

UNICODE-CHAR = "\" "u" 4*4HEX-DIGIT ; example y -> \uooff

QUOTED-STRING-CHAR = (UNICHR-L / UNICHR-M / UNICHR-N / UNICHR-P
- (%x0022 / %x005c); without \ and " and

NON-TERMINAL-CHAR = %x0020-003b / %x003d / %x003f-%x007e / %x00a
; ASCII + Latin-1 without control chars an

TERMINAL-LETTER = "'" / "&" / "." / ; Common punctuation inside
UNICHR-L / UNICHR-M / UNICHR-N / UNICHR-PC / U

The following rules specify the tokens of BNF+:

QUOTED-STRING = DQUOTE *(QUOTED-STRING-CHAR / ESCAPE-SEQUENCE /
; A quoted string can contain any character
;The characters " and \ must be escaped insi

NON-TERMINAL = "<" 1*NON-TERMINAL-CHAR ">"
5 A non-terminal can contain any character th
; The exception is the use of < and >.
;5 There 1s no escape mechanism for these char
; We feel this is not a severe Limitation.

TERMINAL = *(TERMINAL-LETTER / DIGIT) TERMINAL-LETTER *(TERMINAL
; A terminal primarily consists of alphanumeric cha
;5 A number of word-internal punctuation characters

INTEGER = 1*DIGIT /
"Ox" 1*HEX-DIGIT /
("a" / "A") "6" "4" 1*BASE64-SYMBOL
; Integers are not part of this terminal token defin
; BNF+ uses integers for 2 functions: as terminals b
;5 Therefore we need to distinguish integers from oth
; Integers can be used as terminals too.

GRAMMAR-KEYWORD = "!grammar"
LANGUAGE -KEYWORD = "!language"
START-KEYWORD = "!start”

EXPORT-KEYWORD

"lexport"

IMPORT-KEYWORD = "!import"

SLOT-KEYWORD = "!slot"
; !slot was originally proposed as a synonym fo

ACTIVATABLE-KEYWORD = "!activatable"
PRONOUNCE-KEYWORD = "!pronounce"

PRONOUNCE-OPEN = "!pronounce" *SIMPLE-SPACE "("
OPTIONAL-OPEN = "l!optional™ *SIMPLE-SPACE " ("
ID-OPEN = "!id" *SIMPLE-SPACE " ("

REPEAT-OPEN = "lrepeat" *SIMPLE-SPACE " ("
TAG-OPEN = "!tag" *SIMPLE-SPACE " ("
OPEN-SQUARE-BRACKET = "["

CLOSE-SQUARE-BRACKET = "]"

OPEN-PARENTHESIS = " ("

CLOSE-PARENTHESIS = ")"

COLON = ":"
PIPE = "|"
PLUS = "+"
STAR = "*"
COMMA = ","

TERMINATOR = ";"

Self-ldentifying Header

The first characters of the file must contain the header. The header is
specified by:

HEADER = II#II llBll IINll IIFII l|+ll llEll IIMII *NHITE-SPACE IIVII 1*DIGIT n .

The following version numbers should be accepted:

e 10
e 1.1

e 20
e 21

Comments

Comments are ignored. Comments are defined by:

LINE-COMMENT-CHAR = SIMPLE-SPACE /
%Xx0020-%x007e /
%x00a0-%x00ff

LINE-COMMENT = "//" *LINE-COMMENT-CHAR

BLOCK-COMMENT-CHAR = WHITE-SPACE /
%X0020-%x0029 /
%X002b-%x002e /
%X0030-%x007e /
%X00a0-%x00ff

BLOCK-COMMENT = "/*" *((*"*x" / *"/") *BLOCK-COMMENT-CHAR) "*/"
;5 Difficult way of saying: */ is not allowed

BNF+EMV2.1 Syntax

This is the syntax of BNF+ in ABNF:

grammar = *statement

statement = grammar-statement /
export-statement /
import-statement /
slot-statement /
grammar-statement /
activable-statement /
pronounce-statement /
language-statement /
rule

grammar-statement = GRAMMAR-KEYWORD (QUOTED-STRING / TERMINAL) T
start-statement = START-KEYWORD rule-list TERMINATOR

EXPORT-KEYWORD rule-list TERMINATOR

export-statement

import-statement IMPORT-KEYWORD rule-list TERMINATOR

slot-statement = SLOT-KEYWORD rule-list TERMINATOR

activatable-statement = IMPORT-KEYWORD rule-list TERMINATOR
pronounce-statement = PRONOUNCE-KEYWORD (TERMINAL / QUOTED-STRIN
language-statement = LANGUAGE-KEYWORD (TERMINAL / QUOTED-STRING)
; Included for backwards compatibility
; Has no meaning and may even trigger a c
rule-list = 1*NON-TERMINAL
transcription-list = transcription *(PIPE transcription)
transcription = *1(TERMINAL) QUOTED-STRING
rule = NON-TERMINAL COLON expression TERMINATOR
expression = alternative *(PIPE expression) *(PLUS / STAR)
alternative = factor *(factor)
factor = (TERMINAL / QUOTED-STRING / INTEGER) *(terminal-modifie
NON-TERMINAL /
OPEN-PARENTHESIS expression CLOSE-PARENTHESIS /
OPEN-SQUARE-BRACKET expression CLOSE-SQUARE-BRACKET /
OPTIONAL-OPEN expression CLOSE-PARENTHESIS /
REPEAT-OPEN expression COMMA repeat-body CLOSE-PARENTHE
TAG-OPEN tag COMMA expression CLOSE-PARENTHESIS

repeat-body = INTEGER (COMMA (INTEGER / STAR) / STAR / PLUS)

terminal-modifier = ID-OPEN INTEGER CLOSE-PARENTHESIS /
PRONOUNCE-OPEN transcription-1list CLOSE-PARE

tag = TERMINAL *1(ID-OPEN INTEGER CLOSE-PARENTHESIS) /
ID-OPEN INTEGER CLOSE-PARENTHESIS

